dominance theorem - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

dominance theorem - перевод на русский

PARTIAL ORDER BETWEEN RANDOM VARIABLES
Statistical dominance; Stochastic Dominance; First-order stochastic dominance; Statewise dominance; Second-order stochastic dominance

dominance theorem      

теория игр

теорема о доминировании

dominance theorem      
т. игр теорема о доминировании
divergence theorem         
  • n}}
  • A volume divided into two subvolumes. At right the two subvolumes are separated to show the flux out of the different surfaces.
  • The volume can be divided into any number of subvolumes and the flux out of ''V'' is equal to the sum of the flux out of each subvolume, because the flux through the <span style="color:green;">green</span> surfaces cancels out in the sum. In (b) the volumes are shown separated slightly, illustrating that each green partition is part of the boundary of two adjacent volumes
  • </math> approaches <math>\operatorname{div} \mathbf{F}</math>
  • The divergence theorem can be used to calculate a flux through a [[closed surface]] that fully encloses a volume, like any of the surfaces on the left. It can ''not'' directly be used to calculate the flux through surfaces with boundaries, like those on the right. (Surfaces are blue, boundaries are red.)
  • The vector field corresponding to the example shown. Vectors may point into or out of the sphere.
GENERALIZATION OF THE FUNDAMENTAL THEOREM IN VECTOR CALCULUS
Gauss' theorem; Gauss's theorem; Gauss theorem; Ostrogradsky-Gauss theorem; Ostrogradsky's theorem; Gauss's Theorem; Divergence Theorem; Gauss' divergence theorem; Ostrogradsky theorem; Gauss-Ostrogradsky theorem; Gauss Ostrogradsky theorem; Gauss–Ostrogradsky theorem

математика

теорема о дивергенции

теорема Гаусса-Остроградского

Определение

dominance
¦ noun
1. power and influence over others.
2. Genetics the phenomenon whereby one allelic form of a gene is expressed to the exclusion of the other.
3. Ecology the predominance of one or more species in a plant or animal community.
Derivatives
dominancy noun

Википедия

Stochastic dominance

Stochastic dominance is a partial order between random variables. It is a form of stochastic ordering. The concept arises in decision theory and decision analysis in situations where one gamble (a probability distribution over possible outcomes, also known as prospects) can be ranked as superior to another gamble for a broad class of decision-makers. It is based on shared preferences regarding sets of possible outcomes and their associated probabilities. Only limited knowledge of preferences is required for determining dominance. Risk aversion is a factor only in second order stochastic dominance.

Stochastic dominance does not give a total order, but rather only a partial order: for some pairs of gambles, neither one stochastically dominates the other, since different members of the broad class of decision-makers will differ regarding which gamble is preferable without them generally being considered to be equally attractive.

Throughout the article, ρ , ν {\displaystyle \rho ,\nu } stand for probability distributions on R {\displaystyle \mathbb {R} } , while A , B , X , Y , Z {\displaystyle A,B,X,Y,Z} stand for particular random variables on R {\displaystyle \mathbb {R} } . The notation X ρ {\displaystyle X\sim \rho } means that X {\displaystyle X} has distribution ρ {\displaystyle \rho } .

There are a sequence of stochastic dominance orderings, from first 1 {\displaystyle \succeq _{1}} , to second 2 {\displaystyle \succeq _{2}} , to higher orders n {\displaystyle \succeq _{n}} . The sequence is increasingly more inclusive. That is, if ρ n ν {\displaystyle \rho \succeq _{n}\nu } , then ρ k ν {\displaystyle \rho \succeq _{k}\nu } for all k n {\displaystyle k\geq n} . Further, there exists ρ , ν {\displaystyle \rho ,\nu } such that ρ n + 1 ν {\displaystyle \rho \succeq _{n+1}\nu } but not ρ n ν {\displaystyle \rho \succeq _{n}\nu } .

Stochastic dominance could trace back to (Blackwell, 1953), but it was not developed until 1969–1970.

Как переводится dominance theorem на Русский язык